This is a read-only mirror of pymolwiki.org
Ellipsoid
Jump to navigation
Jump to search
This script provides a class called "SimpleEllipsoid" that can be created and loaded into pymol as a callback object. It uses code that is ported from this c++ code and seems to be correct! In theory, this could be extended to make toroidal objects, as well as cylinders, spheres, and 'pillows'. Probably not very useful, though.
Here is the script. The last four lines show this in use, by making two ellipses and loading them into pymol.
from pymol.opengl.gl import *
from pymol.callback import Callback
from pymol import cmd
def signOfFloat(f):
if f < 0: return -1
if f > 0: return 1
return 0
def sqC(v, n):
return signOfFloat(math.cos(v)) * math.pow(math.fabs(math.cos(v)), n)
def sqCT(v, n, alpha):
return alpha + sqC(v, n)
def sqS(v, n):
return signOfFloat(math.sin(v)) * math.pow(math.fabs(math.sin(v)), n)
def sqEllipsoid(a1, a2, a3, u, v, n, e):
x = a1 * sqC(u, n) * sqC(v, e)
y = a2 * sqC(u, n) * sqS(v, e)
z = a3 * sqS(u, n)
nx = sqC(u, 2 - n) * sqC(v, 2 - e) / a1
ny = sqC(u, 2 - n) * sqS(v, 2 - e) / a2
nz = sqS(u, 2 - n) / a3
return x, y, z, nx, ny, nz
def sqToroid(a1, a2, a3, u, v, n, e, alpha):
a1prime = 1 / (a1 + alpha)
a2prime = 1 / (a2 + alpha)
a3prime = 1 / (a3 + alpha)
x = a1prime * sqCT(u, e, alpha) * sqC(v, n)
y = a2prime * sqCT(u, e, alpha) * sqS(v, n)
z = a3prime * sqS(u, e)
nx = sqC(u, 2 - e) * sqC(v, 2 - n) / a1prime
ny = sqC(u, 2 - e) * sqS(v, 2 - n) / a2prime
nz = sqS(u, 2 - e) / a3prime
return x, y, z, nx, ny, nz
class SuperQuadricEllipsoid(Callback):
def __init__(self, x, y, z, a1, a2, a3, n, e, u1, u2, v1, v2, u_segs, v_segs, alpha=0):
# Calculate delta variables
dU = (u2 - u1) / u_segs
dV = (v2 - v1) / v_segs
# Setup storage for data
self.points = []
self.normals = []
# Store the position
self.x, self.y, self.z = x, y, z
# Initialize variables for loop
U = u1
for Y in range(0, u_segs):
# Initialize variables for loop
V = v1
for X in range(0, v_segs):
# VERTEX #1 */
x, y, z, nx, ny, nz = sqEllipsoid(a1, a2, a3, U, V, n, e)
self.points.append((x, y, z))
self.normals.append((nx, ny, nz))
# VERTEX #2 */
x, y, z, nx, ny, nz = sqEllipsoid(a1, a2, a3, U + dU, V, n, e)
self.points.append((x, y, z))
self.normals.append((nx, ny, nz))
# VERTEX #3 */
x, y, z, nx, ny, nz = sqEllipsoid(a1, a2, a3, U + dU, V + dV, n, e)
self.points.append((x, y, z))
self.normals.append((nx, ny, nz))
# VERTEX #4 */
x, y, z, nx, ny, nz = sqEllipsoid(a1, a2, a3, U, V + dV, n, e)
self.points.append((x, y, z))
self.normals.append((nx, ny, nz))
# Update variables for next loop */
V += dV
# Update variables for next loop */
U += dU
def get_extent(self):
return [[-10.0, -10.0, -10.0], [10.0, 10.0, 10.0]]
def __call__(self):
glPushMatrix()
glTranslatef(self.x, self.y, self.z)
glBegin(GL_QUADS)
glColor3f(1.0, 1.0, 0.0)
for i in range(0, u_segs * v_segs * 4):
x, y, z = self.points[i]
nx, ny, nz = self.normals[i]
glNormal3f(nx, ny, nz)
glVertex3f(x, y, z)
glEnd()
glPopMatrix()
class SimpleEllipsoid(SuperQuadricEllipsoid):
def __init__(self, x, y, z, a1, a2, a3):
SuperQuadricEllipsoid.__init__(self, x, y, z, a1, a2, a3, 1.0, 1.0, -math.pi / 2, math.pi / 2, -math.pi, math.pi, 10, 10)
x, y, z = 1, 1, 1
rx, ry, rz = 1, 2, 3
cmd.load_callback(SimpleEllipsoid(rx, ry, rz), 'ellipsoid1')
x, y, z = 2, 2, 2
rx, ry, rz = 2, 1, 3
cmd.load_callback(SimpleEllipsoid(rx, ry, rz), 'ellipsoid2')