This is a read-only mirror of pymolwiki.org
Difference between revisions of "Ellipsoid"
Jump to navigation
Jump to search
(No difference)
|
Revision as of 21:27, 11 July 2005
This script provides a class called "SimpleEllipsoid" that can be created and loaded into pymol as a callback object. It uses code that is ported from this c++ code and seems to be correct! In theory, this could be extended to make toroidal objects, as well as cylinders, spheres, and 'pillows'. Probably not very useful, though.
Here is the script. The last four lines show this in use, by making two ellipses and loading them into pymol.
from pymol.opengl.gl import *
from pymol.callback import Callback
from pymol import cmd
def signOfFloat(f):
if f < 0: return -1
if f > 0: return 1
return 0
def sqC(v, n):
return signOfFloat(math.cos(v)) * math.pow(math.fabs(math.cos(v)), n)
def sqCT(v, n, alpha):
return alpha + sqC(v, n)
def sqS(v, n):
return signOfFloat(math.sin(v)) * math.pow(math.fabs(math.sin(v)), n)
def sqEllipsoid(a1, a2, a3, u, v, n, e):
x = a1 * sqC(u, n) * sqC(v, e)
y = a2 * sqC(u, n) * sqS(v, e)
z = a3 * sqS(u, n)
nx = sqC(u, 2 - n) * sqC(v, 2 - e) / a1
ny = sqC(u, 2 - n) * sqS(v, 2 - e) / a2
nz = sqS(u, 2 - n) / a3
return x, y, z, nx, ny, nz
def sqToroid(a1, a2, a3, u, v, n, e, alpha):
a1prime = 1 / (a1 + alpha)
a2prime = 1 / (a2 + alpha)
a3prime = 1 / (a3 + alpha)
x = a1prime * sqCT(u, e, alpha) * sqC(v, n)
y = a2prime * sqCT(u, e, alpha) * sqS(v, n)
z = a3prime * sqS(u, e)
nx = sqC(u, 2 - e) * sqC(v, 2 - n) / a1prime
ny = sqC(u, 2 - e) * sqS(v, 2 - n) / a2prime
nz = sqS(u, 2 - e) / a3prime
return x, y, z, nx, ny, nz
class SuperQuadricEllipsoid(Callback):
def __init__(self, a1, a2, a3, n, e, u1, u2, v1, v2, u_segs, v_segs, alpha=0):
# Calculate delta variables */
dU = (u2 - u1) / u_segs
dV = (v2 - v1) / v_segs
# Initialize variables for loop */
U = u1
self.points = []
self.normals = []
for Y in range(0, u_segs):
# Initialize variables for loop */
V = v1
for X in range(0, v_segs):
# VERTEX #1 */
x, y, z, nx, ny, nz = sqEllipsoid(a1, a2, a3, U, V, n, e)
self.points.append((x, y, z))
self.normals.append((nx, ny, nz))
# VERTEX #2 */
x, y, z, nx, ny, nz = sqEllipsoid(a1, a2, a3, U + dU, V, n, e)
self.points.append((x, y, z))
self.normals.append((nx, ny, nz))
# VERTEX #3 */
x, y, z, nx, ny, nz = sqEllipsoid(a1, a2, a3, U + dU, V + dV, n, e)
self.points.append((x, y, z))
self.normals.append((nx, ny, nz))
# VERTEX #4 */
x, y, z, nx, ny, nz = sqEllipsoid(a1, a2, a3, U, V + dV, n, e)
self.points.append((x, y, z))
self.normals.append((nx, ny, nz))
# Update variables for next loop */
V += dV
# Update variables for next loop */
U += dU
def get_extent(self):
return [[-10.0, -10.0, -10.0], [10.0, 10.0, 10.0]]
def __call__(self):
glBegin(GL_QUADS)
glColor3f(1.0, 1.0, 0.0)
for i in range(0, u_segs * v_segs * 4):
x, y, z = self.points[i]
nx, ny, nz = self.normals[i]
glNormal3f(nx, ny, nz)
glVertex3f(x, y, z)
glEnd()
class SimpleEllipsoid(SuperQuadricEllipsoid):
def __init__(self, a1, a2, a3):
SuperQuadricEllipsoid.__init__(self, a1, a2, a3, 1.0, 1.0, -math.pi / 2, math.pi / 2, -math.pi, math.pi, 10, 10)
rx, ry, rz = 1, 2, 3
cmd.load_callback(SimpleEllipsoid(rx, ry, rz), 'ellipsoid1')
rx, ry, rz = 2, 1, 3
cmd.load_callback(SimpleEllipsoid(rx, ry, rz), 'ellipsoid2')